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ABSTRACT 

We worked on the problem of grasping 

objects based upon a single 2d 
representation of them as might be 

acquired by the camera on a robot. This 

was a challenge previously tackled by 

Professor Ashutosh Saxena while he 
was working at Stanford University. Our 

initial challenge was to get the code 

initially given to us to run properly on 
our systems. This was a significant 

challenge as the code was 

undocumented and heavily dependent 
upon the unknown file structure used in 

the previous implementation. Once we 

had resolved this problem, we attempted 

to improve accuracy by increasing the 
number of positive patches available to 

the training set.  Another approach we 

used in an attempt to improve accuracy 
was to find a single weights vector for 

each type of object, and then find 

grasping points by first classifying the 

object and then selecting a weights 
vector.  

 

INTRODUCTION 

In the paper “Learning Grasp Strategies with 

Partial Shape Information” [1]  Ashutosh 

Saxena along with several other researchers 

at Stanford were able to take various images 

of common items from around an office and 

kitchen and use machine learning to identify 

grasping points on the objects. These 

grasping points were locations for a robot 

arm to easily pick up the object. 

Unfortunately, the code as packaged did not 

run, and required extensive sifting through 

in order to be correctly executed. The basic 

structure of the code operated as follows:  

1. Write a script to convert images into 

feature vectors 

2. Take a subset of image feature 

vectors to use as training data.  

3. In order to train, the images need to 

be mapped to the corresponding 

manually identified grasping points. 

These feature vectors need to be 

placed in correctly formatted arrays 

and then passed as inputs to the 

glmfit function 

4. The output of the glmfit function is a 

52x1 weights vector. This vector is 

used as the input of the matlab 

function glmval, along with the 

feature vector of the image to be 

tested. The output of this function 

contains the grasping point 

information which can then be 

formatted as appropriate.  

 

Once these steps have all been 

accomplished, the grasping determined from 

glmval can then be compared to manually 

marked grasping points given to us in the 

training data. This allows us to determine 

the accuracy of our measurements. Once we 

got this far, it was important to find ways to 

improve the algorithm. We approached this 

from two angles.  

 

One was to attempt to use more images in 

the training set. In our initial approach, we 

were limited to using 150 images in the 

training set. This is because the training set 

feature vectors need to be combined into a 

single extremely long array, and eventually 

run into the continuous memory restrictions 

of the computer the code is being run on.  

 

We could increase the number of images by 

decreasing the size of each image used in 



training. Since the images used in our 

analysis are mostly blank space surrounding 

the object in question, we could start by 

locating the object, then selecting a 400x400 

box surrounding the object, and then use this 

for the training arrays. This would increase 

the number of images the algorithm could 

train with, and as such, increase the number 

of grasping points in the training set.  

 

 The other approach we took to improve the 

accuracy of the algorithm was to train it 

once for each object type. This yields a 

weights vector for each object type. When 

looking for grasping points on an object, we 

would first classify it as a specific object 

type and then use the associated weights 

vector in the glmval function to locate the 

grasping points. This would allow us to use 

150 training images for each object type and 

could provide for the highest possible 

accuracy.  

 

APPROACH 

 

Initially we took 140 images, 20 of each 

object classification, and established them as 

our training set. We took the training set and 

organized them into their own folders. Each 

image was divided into patches for analysis.  

The 480x640 images were 67 patches wide 

and 54 patches long. The images typically 

consisted of a single object in a single color 

with a gray background. A few examples of 

original images can be seen on the left side 

of Figure 1 below. The goal of the matlab 

code was to determine which patches 

represent grasping points and which did not. 

For each image we also had a marked image 

which was a binary depiction of grasping 

points vs not grasping points in the 

corresponding original image. This 

corresponding grasping image was 

considered to be the ground truth in our 

analysis.  A few examples of original images 

and their corresponding marked images can 

be seen in Figure 2 below. 

 

To prepare the data for the glmfit function, 

we took the original images, and first passed 

them through the makeDepthFeatureVector 

function provided by Professor Saxena. The 

output of this function was a 3d array 

67x54x51. For every single patch, there 

were 51 features. For every original image 

from the training set, we would generate this 

3d array, and then we stacked them on top of 

each other in 2 dimensions. One row for 

every single patch from every single image, 

and 51 columns for the 51 features 

associated with each.   

 

Some examples of the feature depth vectors 

can be seen in Figure 1 on the next page.  

 

Ultimately, when all the feature vectors 

were combined, they formed a 2D matrix 

like the one seen in Figure 3 below. 

 

We also took the corresponding grasping 

images, and simply stacked each patch one 

on top of the other with either a 1 or a 0 

representing whether or not it was a 

grasping point.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                  
 

                                  
 

Figure 1. Original Images converted to Feature Vectors 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Original Images and their Grasping Points 

 



 
Figure 3. 2D Matrix representing all feature vectors for training images 

 

 

EXPERIMENTS 

With these 140 images setup, we called the 

glmfit function and were able to get a 

weights vector. With this vector we called 

the glmval function first for each of the 

images we used for training. We then took 

the top value coming returned by glmval and 

assumed that this was the grasping point 

selected. The results were adequate although 

not spectacular as can be seen in Figure 4 

and 5 below. Figure 4 is an example of the 

algorithm working well. On the other hand, 

Figure 5, is an example of the image 

algorithm working quiet poorly.  

 

 

 

 

 

Figure 4 

 

 

Figure 5 

In order to get a reasonable grasp of how 

accurate our algorithm really was, we ran it 

across all the training images we had at our 

disposal. We then took the patch given the 

highest value, and checked to see if it was 

actually a grasping point from our ground 

truth grasping points. The results of this 

approach yielded only 10% of the top level 

grasping points as being actual grasping 

points. This is obviously an extremely low 

accuracy rate, and as such, we set out to 

improve it.  

 

 



IMPROVEMENTS 

The improvements we made were two fold.  

Shrinking Images: we tried was shrinking 

the images from 640 x 480 to 400 x 400. 

This allowed us to decrease the number of 

patches in the image from 67x54 to 45x42 

while maintaining roughly the same patch 

size. The benefit of shrinking the number of 

patches was that it allowed us to increase the 

number of training images without running 

out of memory.  

In order to shrink these images, we used the 

grasping point images to locate the object, 

with matlab’s regionprops function. Once 

we had located the center of the grasping 

points, we selected the 400 pixels 

surrounding it in both the original image and 

the grasping image. This created a new set 

of images, and corresponding grasping 

points all of which were smaller. These 

smaller images allowed us to go from a 

training set of 140 images to 240 images.  

We expected to see a corresponding increase 

in the accuracy of the algorithm based on the 

increase in the number of training images.  

With this increase, we did see a 

corresponding improvement in the number 

of correctly identified grasping points, as it 

went from roughly 10% to roughly 12%. An 

example of an improved grasping point can 

be seen in figures 6 A and B below. 

 

 

 

 

         Figure 6 A                    Figure 6 B        

Unfortunately, this improvement was not 

very significant and as such, we tried a 

different approach for improvement. 

 

Classification: A Vector Quantizer (VQ) is 

essentially an approximator, somewhat 

similar in nature to “rounding off” to the 

nearest digit. A simple example could be a 

number line, the set of numbers between 0 

and +2 is approximated by 1 (the centroid), 

the set of numbers between -2 and 0 is 

approximated by -1, every number greater 

than +2 is approximated by +3, every 

number lesser than -2 is approximated by -3 

and so on. 

 

This notion can be extended to 2 dimensions 

by using centroids for defined regions. 

 

In the above example the red stars are the 

codevectors (or centroids) and the set of all 

the codevectors is known as a codebook. 

The complexity in the design of a VQ 

increases with the increase in the number of 

dimensions.  



 

In 1980, Linde-Buzo-Gray proposed a VQ 

design algorithm, known as VQ-LBG, based 

on a training sequence. The initial 

codevector is obtained by finding the 

average of the whole cluster; two 

codevectors are obtained from the initial 

codevector by splitting the whole cluster 

into two regions. The iterative algorithm 

uses these two codevectors as the initial 

codevector to compute more codevectors, 

and till we get a codebook with the desired 

number of codevectors. 

 

The algorithm is as follows:  

1. Design a 1-vector codebook; this is the 

centroid of the entire set of training vectors 

(hence, no iteration is required here). 

2. Double the size of the codebook by 

splitting each current codebook yn 

according to the rule: where n varies from 1 

to the current size of the codebook, and e is 

the splitting parameter. For our system, e = 

0.001.(1 ) 

3. Nearest-Neighbor Search: for each 

training vector, find the centroid in the 

current codebook that is closest (in terms of 

similarity measurement), and assign that 

vector to the corresponding cell (associated 

with the closest centroid). This is done using 

the K-means iterative algorithm. 

4. Centroid Update: update the centroid in 

each cell using the centroid of the training 

vectors assigned to that cell. 

5. Iteration 1: repeat steps 3 and 4 until the 

average distance falls below a preset 

threshold 

6. Iteration 2: repeat steps 2, 3, and 4 until a 

codebook of size M is reached. 

 

 
 

In the training phase, a class-specific VQ 

codebook is generated for each known class 

by clustering its training feature vectors. The 

resultant codewords (centroids) are shown in 

Figure 4 by circles and triangles at the 

centers of the corresponding blocks for 

speaker1 and 2, respectively. The distance 

from a vector to the closest codeword of a 

codebook is called a VQ distortion. In the 

recognition phase, an input utterance of an 

unknown voice is “vector-quantized” using 

each trained codebook and the total VQ 

distortion is computed. The speaker 

corresponding to the VQ codebook with the 

smallest total distortion is identified. 

 

 
 



In the recognition phase the features of an 

unknown image are extracted and 

represented by a sequence of feature vectors 

{x1… xn}. Each feature vector in the 

sequence X is compared with all the stored 

codewords in codebook, and the codeword 

with the minimum distance from the feature 

vectors is selected as proposed command 

For each codebook a distance measure is 

computed, and the command with the lowest 

distance is chosen. 

 

Using this methodology, we attempted to 

improve our accuracy by first classifying the 

image as one of the images we have used for 

training. Once the image is classified, we 

can then use a weights vector corresponding 

exclusively to that image type. This allows 

us to increase from roughly 20 images per 

object type in the original version all the 

way up to 140 images per object type in the 

training.  

RESULTS 

Our initial results at first looked quite 

appealing as on almost all the images, we 

were able to obtain at least one correct 

grasping point on almost all of the images, 

as can be seen in the attached excel file. 

Unfortunately, this algorithm almost never 

found only correct grasping points, nor did it 

frequently even find all correct grasping 

points. As such, we only considered the 

single grasping point that the algorithm 

considered most likely to be a grasping 

point. Unfortunately, this turned out to 

correspond to a correct grasping point only 

10.61% of the time.  

We adjusted the algorithm to only examine 

the 400x400 section of the centered on the 

grasping point. We expected the 

significantly greater number of training 

images to yield better results for the 

grasping points. Unfortunately, this 

modification only resulted in an accurate top 

grasping point 12.92% of the time.  

Once we moved to the classifier based 

approach however, we were able to obtain 

significantly better results.  

The classifier was tested with a set of 50 

images and success rate was roughly 93%. 

However, we noticed some interesting 

behaviour; it classified objects by immediate 

appearance. Example: A martini glass when 

looked at from the top looks like a 

cerealbowl, and must be grasped at the rim 

like a cerealbowl. Speaking in absolute 

terms this would be a misclassification. But 

for the purposes of our grasping algorithm 

we would need the martini glass (top view) 

to be classified as a cerealbowl. Hence, we 

could venture as far as saying that the 

classifier has 100% success rate. 

 

Once the items had been correctly classified, 

we could use the appropriate weights vector 

to determine the grasping point. With this 

approach, we were able to develop a weights 

vector using a training set of 140 images for 

EACH item, and as such expected it to be 

much more accurate.  

Approach Accuracy(%) 

Original 10.61% 

Shrunken 12.92% 

Classifier 35.59% 

Martini 14.29% 

Mug 23.76% 

teaTwo 33.00% 

CerealBowl 71.29% 

 

 



 

FUTURE WORK 

 

Other approaches to improving the 

algorithm were to use segmentation to 

extract global features from the image. We 

ran into issues with this primarily because of 

two reasons. The region-growing algorithm 

takes a long time to run in matlab, making it 

infeasible for practical application. Also, the 

existing feature vector could not be 

augmented with the new features because of 

disagreeing dimensions.  

 

While we were clearly able to demonstrate a 

significant improvement over the existing 

algorithm, we suspect the inaccuracies arise 

due to a more fundamental problem, that 

being extracting the feature vectors. Since 

the same feature vectors were used to 

classify the images, we are sure that they 

work reasonably for purposes of 

classification. But the classification would 

still work so long as they yielded the similar 

results for each class of object. This does not 

prove the validity of the feature vectors 

beyond that we are just calling the function 

correctly. 

 

More techniques could be examined to 

include more global features of the object as 

opposed to just local features as this current 

program does. We also propose some 

extensive testing with the current feature 

vectors to determine their validity. 

 

CONCLUSION 

Our algorithm succeeds at finding the right 

grasping points and is certainly an 

improvement over the existing algorithm. 

However, the performance of the program is 

limited by one major factor; inability to use 

more images for the training phase, due to 

the space constraints imposed by Matlab. 

Our first improvement, i.e. shrinking input 

images to 400x400 so as to eliminate a 

significant number of negative patches 

allows us to use 240 images in training as 

opposed to 140 originally. Our second 

improvement allows us to make training 

more specific, i.e. use a training set based on 

the class of the object, which allows using 

240 images of the same class against 240 

generic images originally. There would 

definitely be an increase in performance if 

there were a way to include more images in 

training. Looking for solutions in this regard 

could be a potential source of work in the 

future. Also, some work could be done with 

image segmentation to isolate different 

objects from a given image. Currently the 

algorithm exploits only local features such 

as planarity, depth, symmetry and center of 

mass. This would allow us to incorporate 

some more global features of the object 

itself in the training phase and also eliminate 

a lot of false positives in the testing phase. 
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