
Identifying Grasping Points on Common Household Objects

Avtar Khalsa, Sajeev Krishnan

ABSTRACT

We worked on the problem of grasping

objects based upon a single 2d
representation of them as might be

acquired by the camera on a robot. This

was a challenge previously tackled by

Professor Ashutosh Saxena while he
was working at Stanford University. Our

initial challenge was to get the code

initially given to us to run properly on
our systems. This was a significant

challenge as the code was

undocumented and heavily dependent
upon the unknown file structure used in

the previous implementation. Once we

had resolved this problem, we attempted

to improve accuracy by increasing the
number of positive patches available to

the training set. Another approach we

used in an attempt to improve accuracy
was to find a single weights vector for

each type of object, and then find

grasping points by first classifying the

object and then selecting a weights
vector.

INTRODUCTION

In the paper “Learning Grasp Strategies with

Partial Shape Information” [1] Ashutosh

Saxena along with several other researchers

at Stanford were able to take various images

of common items from around an office and

kitchen and use machine learning to identify

grasping points on the objects. These

grasping points were locations for a robot

arm to easily pick up the object.

Unfortunately, the code as packaged did not

run, and required extensive sifting through

in order to be correctly executed. The basic

structure of the code operated as follows:

1. Write a script to convert images into

feature vectors

2. Take a subset of image feature

vectors to use as training data.

3. In order to train, the images need to

be mapped to the corresponding

manually identified grasping points.

These feature vectors need to be

placed in correctly formatted arrays

and then passed as inputs to the

glmfit function

4. The output of the glmfit function is a

52x1 weights vector. This vector is

used as the input of the matlab

function glmval, along with the

feature vector of the image to be

tested. The output of this function

contains the grasping point

information which can then be

formatted as appropriate.

Once these steps have all been

accomplished, the grasping determined from

glmval can then be compared to manually

marked grasping points given to us in the

training data. This allows us to determine

the accuracy of our measurements. Once we

got this far, it was important to find ways to

improve the algorithm. We approached this

from two angles.

One was to attempt to use more images in

the training set. In our initial approach, we

were limited to using 150 images in the

training set. This is because the training set

feature vectors need to be combined into a

single extremely long array, and eventually

run into the continuous memory restrictions

of the computer the code is being run on.

We could increase the number of images by

decreasing the size of each image used in

training. Since the images used in our

analysis are mostly blank space surrounding

the object in question, we could start by

locating the object, then selecting a 400x400

box surrounding the object, and then use this

for the training arrays. This would increase

the number of images the algorithm could

train with, and as such, increase the number

of grasping points in the training set.

 The other approach we took to improve the

accuracy of the algorithm was to train it

once for each object type. This yields a

weights vector for each object type. When

looking for grasping points on an object, we

would first classify it as a specific object

type and then use the associated weights

vector in the glmval function to locate the

grasping points. This would allow us to use

150 training images for each object type and

could provide for the highest possible

accuracy.

APPROACH

Initially we took 140 images, 20 of each

object classification, and established them as

our training set. We took the training set and

organized them into their own folders. Each

image was divided into patches for analysis.

The 480x640 images were 67 patches wide

and 54 patches long. The images typically

consisted of a single object in a single color

with a gray background. A few examples of

original images can be seen on the left side

of Figure 1 below. The goal of the matlab

code was to determine which patches

represent grasping points and which did not.

For each image we also had a marked image

which was a binary depiction of grasping

points vs not grasping points in the

corresponding original image. This

corresponding grasping image was

considered to be the ground truth in our

analysis. A few examples of original images

and their corresponding marked images can

be seen in Figure 2 below.

To prepare the data for the glmfit function,

we took the original images, and first passed

them through the makeDepthFeatureVector

function provided by Professor Saxena. The

output of this function was a 3d array

67x54x51. For every single patch, there

were 51 features. For every original image

from the training set, we would generate this

3d array, and then we stacked them on top of

each other in 2 dimensions. One row for

every single patch from every single image,

and 51 columns for the 51 features

associated with each.

Some examples of the feature depth vectors

can be seen in Figure 1 on the next page.

Ultimately, when all the feature vectors

were combined, they formed a 2D matrix

like the one seen in Figure 3 below.

We also took the corresponding grasping

images, and simply stacked each patch one

on top of the other with either a 1 or a 0

representing whether or not it was a

grasping point.

Figure 1. Original Images converted to Feature Vectors

Figure 2. Original Images and their Grasping Points

Figure 3. 2D Matrix representing all feature vectors for training images

EXPERIMENTS

With these 140 images setup, we called the

glmfit function and were able to get a

weights vector. With this vector we called

the glmval function first for each of the

images we used for training. We then took

the top value coming returned by glmval and

assumed that this was the grasping point

selected. The results were adequate although

not spectacular as can be seen in Figure 4

and 5 below. Figure 4 is an example of the

algorithm working well. On the other hand,

Figure 5, is an example of the image

algorithm working quiet poorly.

Figure 4

Figure 5

In order to get a reasonable grasp of how

accurate our algorithm really was, we ran it

across all the training images we had at our

disposal. We then took the patch given the

highest value, and checked to see if it was

actually a grasping point from our ground

truth grasping points. The results of this

approach yielded only 10% of the top level

grasping points as being actual grasping

points. This is obviously an extremely low

accuracy rate, and as such, we set out to

improve it.

IMPROVEMENTS

The improvements we made were two fold.

Shrinking Images: we tried was shrinking

the images from 640 x 480 to 400 x 400.

This allowed us to decrease the number of

patches in the image from 67x54 to 45x42

while maintaining roughly the same patch

size. The benefit of shrinking the number of

patches was that it allowed us to increase the

number of training images without running

out of memory.

In order to shrink these images, we used the

grasping point images to locate the object,

with matlab’s regionprops function. Once

we had located the center of the grasping

points, we selected the 400 pixels

surrounding it in both the original image and

the grasping image. This created a new set

of images, and corresponding grasping

points all of which were smaller. These

smaller images allowed us to go from a

training set of 140 images to 240 images.

We expected to see a corresponding increase

in the accuracy of the algorithm based on the

increase in the number of training images.

With this increase, we did see a

corresponding improvement in the number

of correctly identified grasping points, as it

went from roughly 10% to roughly 12%. An

example of an improved grasping point can

be seen in figures 6 A and B below.

 Figure 6 A Figure 6 B

Unfortunately, this improvement was not

very significant and as such, we tried a

different approach for improvement.

Classification: A Vector Quantizer (VQ) is

essentially an approximator, somewhat

similar in nature to “rounding off” to the

nearest digit. A simple example could be a

number line, the set of numbers between 0

and +2 is approximated by 1 (the centroid),

the set of numbers between -2 and 0 is

approximated by -1, every number greater

than +2 is approximated by +3, every

number lesser than -2 is approximated by -3

and so on.

This notion can be extended to 2 dimensions

by using centroids for defined regions.

In the above example the red stars are the

codevectors (or centroids) and the set of all

the codevectors is known as a codebook.

The complexity in the design of a VQ

increases with the increase in the number of

dimensions.

In 1980, Linde-Buzo-Gray proposed a VQ

design algorithm, known as VQ-LBG, based

on a training sequence. The initial

codevector is obtained by finding the

average of the whole cluster; two

codevectors are obtained from the initial

codevector by splitting the whole cluster

into two regions. The iterative algorithm

uses these two codevectors as the initial

codevector to compute more codevectors,

and till we get a codebook with the desired

number of codevectors.

The algorithm is as follows:

1. Design a 1-vector codebook; this is the

centroid of the entire set of training vectors

(hence, no iteration is required here).

2. Double the size of the codebook by

splitting each current codebook yn

according to the rule: where n varies from 1

to the current size of the codebook, and e is

the splitting parameter. For our system, e =

0.001.(1)

3. Nearest-Neighbor Search: for each

training vector, find the centroid in the

current codebook that is closest (in terms of

similarity measurement), and assign that

vector to the corresponding cell (associated

with the closest centroid). This is done using

the K-means iterative algorithm.

4. Centroid Update: update the centroid in

each cell using the centroid of the training

vectors assigned to that cell.

5. Iteration 1: repeat steps 3 and 4 until the

average distance falls below a preset

threshold

6. Iteration 2: repeat steps 2, 3, and 4 until a

codebook of size M is reached.

In the training phase, a class-specific VQ

codebook is generated for each known class

by clustering its training feature vectors. The

resultant codewords (centroids) are shown in

Figure 4 by circles and triangles at the

centers of the corresponding blocks for

speaker1 and 2, respectively. The distance

from a vector to the closest codeword of a

codebook is called a VQ distortion. In the

recognition phase, an input utterance of an

unknown voice is “vector-quantized” using

each trained codebook and the total VQ

distortion is computed. The speaker

corresponding to the VQ codebook with the

smallest total distortion is identified.

In the recognition phase the features of an

unknown image are extracted and

represented by a sequence of feature vectors

{x1… xn}. Each feature vector in the

sequence X is compared with all the stored

codewords in codebook, and the codeword

with the minimum distance from the feature

vectors is selected as proposed command

For each codebook a distance measure is

computed, and the command with the lowest

distance is chosen.

Using this methodology, we attempted to

improve our accuracy by first classifying the

image as one of the images we have used for

training. Once the image is classified, we

can then use a weights vector corresponding

exclusively to that image type. This allows

us to increase from roughly 20 images per

object type in the original version all the

way up to 140 images per object type in the

training.

RESULTS

Our initial results at first looked quite

appealing as on almost all the images, we

were able to obtain at least one correct

grasping point on almost all of the images,

as can be seen in the attached excel file.

Unfortunately, this algorithm almost never

found only correct grasping points, nor did it

frequently even find all correct grasping

points. As such, we only considered the

single grasping point that the algorithm

considered most likely to be a grasping

point. Unfortunately, this turned out to

correspond to a correct grasping point only

10.61% of the time.

We adjusted the algorithm to only examine

the 400x400 section of the centered on the

grasping point. We expected the

significantly greater number of training

images to yield better results for the

grasping points. Unfortunately, this

modification only resulted in an accurate top

grasping point 12.92% of the time.

Once we moved to the classifier based

approach however, we were able to obtain

significantly better results.

The classifier was tested with a set of 50

images and success rate was roughly 93%.

However, we noticed some interesting

behaviour; it classified objects by immediate

appearance. Example: A martini glass when

looked at from the top looks like a

cerealbowl, and must be grasped at the rim

like a cerealbowl. Speaking in absolute

terms this would be a misclassification. But

for the purposes of our grasping algorithm

we would need the martini glass (top view)

to be classified as a cerealbowl. Hence, we

could venture as far as saying that the

classifier has 100% success rate.

Once the items had been correctly classified,

we could use the appropriate weights vector

to determine the grasping point. With this

approach, we were able to develop a weights

vector using a training set of 140 images for

EACH item, and as such expected it to be

much more accurate.

Approach Accuracy(%)

Original 10.61%

Shrunken 12.92%

Classifier 35.59%

Martini 14.29%

Mug 23.76%

teaTwo 33.00%

CerealBowl 71.29%

FUTURE WORK

Other approaches to improving the

algorithm were to use segmentation to

extract global features from the image. We

ran into issues with this primarily because of

two reasons. The region-growing algorithm

takes a long time to run in matlab, making it

infeasible for practical application. Also, the

existing feature vector could not be

augmented with the new features because of

disagreeing dimensions.

While we were clearly able to demonstrate a

significant improvement over the existing

algorithm, we suspect the inaccuracies arise

due to a more fundamental problem, that

being extracting the feature vectors. Since

the same feature vectors were used to

classify the images, we are sure that they

work reasonably for purposes of

classification. But the classification would

still work so long as they yielded the similar

results for each class of object. This does not

prove the validity of the feature vectors

beyond that we are just calling the function

correctly.

More techniques could be examined to

include more global features of the object as

opposed to just local features as this current

program does. We also propose some

extensive testing with the current feature

vectors to determine their validity.

CONCLUSION

Our algorithm succeeds at finding the right

grasping points and is certainly an

improvement over the existing algorithm.

However, the performance of the program is

limited by one major factor; inability to use

more images for the training phase, due to

the space constraints imposed by Matlab.

Our first improvement, i.e. shrinking input

images to 400x400 so as to eliminate a

significant number of negative patches

allows us to use 240 images in training as

opposed to 140 originally. Our second

improvement allows us to make training

more specific, i.e. use a training set based on

the class of the object, which allows using

240 images of the same class against 240

generic images originally. There would

definitely be an increase in performance if

there were a way to include more images in

training. Looking for solutions in this regard

could be a potential source of work in the

future. Also, some work could be done with

image segmentation to isolate different

objects from a given image. Currently the

algorithm exploits only local features such

as planarity, depth, symmetry and center of

mass. This would allow us to incorporate

some more global features of the object

itself in the training phase and also eliminate

a lot of false positives in the testing phase.

ACKNOWLEDGEMENTS

We sincerely thank Prof Saxena for his

assistance, support and guidance and also

for giving us confidence when we needed it

most.

We would also like to thank the members of

the personal robots group for giving us

valuable timely suggestions, without which

the project would not have been successful.

REFERENCES

Robotic Grasping of Novel Objects,

Ashutosh Saxena, Justin Driemeyer, Justin

Kearns, Andrew Y. Ng. In NIPS 19, 2006.

Learning to Grasp Novel Objects using

Vision, Ashutosh Saxena, Justin Driemeyer,

Justin Kearns, Chioma Osondu, Andrew Y.

Ng, ISER, 2006.

